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I. Introduction 

An important consideration in the design and construction 

of the NAL neutrino facility 1-17 over the past several years 

has been the expected flux of neutrinos through a detector. 

Interesting questions concern the dependence of the neutrino 

flux at a given energy on the decay tunnel diameter and length, 

the shield length, the detector size, the proton beam energy, 

the target dimensions, the particle production model, and the 

focusing devices used. Certain of these factors may be studied 

relatively independently of others. A thorough evaluation of the 

effects of target dimensions has been done by Stevenson. 18 

The optimal set of focusing elements for a neutrino 

facility of given dimensions may be a function of those dimen- 

sions. It is desirable therefore to be able to study the effect 

of changes in various facility dimensions or the particle production 

model, independently of any particular focusing device. 

The concept of perfect focusing has proven to be a 

useful tool for this purpose. Immediately following the target 

is assumed to be a "perfect" focusing device which causes all 

mesons emitted by the target to travel down the axis of the 

decay tunnel. The mesons decay with a fixed probability per 

e Operated by Universities Research AssociaGon Inc. Under Contract with the United States Atomic Energy Commission 
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unit proper time until they reach the end of the tunnel. We are 

thus free from considerations of the focusing device used or the 

tunnel diameter. 

In planning an experiment using a wide band focusing device, 

one can obtain a rough estimate of the expected flux by assuming 

it to be a fixed fraction of that obtainable with perfect 

focusing. 

Because of the simple nature of perfect focusing it is 

possible to express the expected flux at a given neutrino energy 

in a simple form. We thus avoid both the tedium and inaccuracies 

of ray tracing. The limitations of ray-tracing methods and the 

need for a new approach in cases involving small solid angles 

were first pointed out by Kang. 19 

In Section II below we describe the layout of the neutrino 

facility and the kinematics of the meson decay which produces 

the neutrinos. In Section III we develop the formalism used to 

calculate the expected neutrino flux versus neutrino energy. 

Finally in Section IV we present some sample results and make 

a comparison with those that would be obtained by ray tracing. 

II. Layout and Kinematics 

The general layout of the NAL neutrino facility is illus- 

trated in Figure 1. The incoming proton beam strikes the target, 

as shown, from the left. The number of protons which interact 

in the target depends on both the target size and its material. 

The secondary particles created, along with the remains of the 

original proton beam, then proceed down the decay tunnel. The 
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positively charged pions and kaons decay, producing neutrinos. 

In both cases the most important decay mode is that which produces 

+ 
ail and a neutrino. For pions the branching ratio into this 

mode is essentially 100% while for kaons it is 63.8%. 

The decay takes place isotropically in the meson center 

of mass, the neutrino proceeding in a straight line which may 

or may not intersect the detector. We are interested in deter- 

mining the number of neutrinos whose paths do indeed hit the 

detector. 

If we let m be the mass of the meson, p that of the muon, 

and EV and F be the center of mass neutrino energy and decay 

angle respectively, then we have: 

(1) 

Ev = m2 - u2 = ; L 
2m 

where we define the quantity r by: 

r= m2 - u2 

m2 

The longitudinal and transverse components of the neutrino 

momentum in the center of mass are then given by: 

Fva = t r cos $ 

Fvt = tj r sin 7 

(2) 

(4) 

Now if we let p and E represent the lab momentum and energy of 

the meson we have for the laboratory components of the neutrino 

momentum: 



-4- 

P vll =$ EcosT+p 
i I 

P vt = $! r sin T 
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(5) 

while the laboratory decay angle I$ is given by: 

tan I$ = m sin F 
(6) 

E cos T + p 

If we take the high energy limit, and express the laboratory decay 

angle in terms of the laboratory neutrino energy we get: 

E =p1; 
V r 7 jl + 00s 3 

i 3 

$ = F i(rp - E,,)/E" 
4 

(7) 

We see that the quantity r is the maximum fraction of the laboratory 

meson momentum that the neutrino may possess. Because the center 

of mass distribution is uniform in cos F, the laboratory 

neutrino energy distribution will be uniform from zero to a maxi- 

mum of rp. 

The laboratory distribution of decays will still be isotropic 

in azimuthal angle. The neutrinos of a given energy produced 

by a decaying meson therefore form a cone with half angle given 

by equation (7). The fraction of the cone intersecting the 

detector equals the fraction of neutrinos of a given energy 

passing through the detector. With perfect focusing the cone 

either entirely hits or misses the detector, rendering the calcula- 

tions particularly simple. 

III. Determining the Flux 

A. The Meson Production Spectrum 

The meson production spectrum is typically expressed as the 

number of mesons produced per proton interaction per unit momentum 
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interval and solid angle, i.e., d2N/dpdn. In past calculations 

the CKP2' and Hagedorn-Ranft 21-24 models were the most often 

employed, while others have, at times, been considered or 

used.25-2g 

It is convenient for numerical calculations to specify the 

production spectrum as a matrix Smn. The momentum and angle 

ranges are divided into intervals and Smn gives the total number 

of particles produced in the m'th momentum interval and the n'th 

angle interval. A given matrix element is given by: 

%n = 2Tr d2N 

Ae, *P, 
m sin '3 dpde (8) 

where Ap, and ABn represent the m'th momentum interval and n'th 

angle interval respectively. 

If the target length is t and the interaction length for 

protons is X 
P' 

then the fraction of protons which interact in 

the target is given by: 

f = 1 - e-t/Xp (9) 

The quantity Smn gives the number of mesons produced per inter- 

acting proton. We now wish to take into account absorption of 

mesons in the target to determine an effective spectrum produced 

by the target. To do this we divide the target into R parts, 

where the same number of proton interactions takes place in each 

part. In each section we determine a point at distance Qi from 

the front of the target which similarly divides that section 

into two parts. The distance Qi is then given by: 

Qi = -Xolog 1 - (i - %) f/L1 (10) J 
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If the radius of the target is R then for small angles the 

path length travelled through the target by a meson produced at 

point Qi and at angle On is given approximately by: 
r 

d in = min !t - Qi, (11) 
L 

Since, with perfect focusing, the particles travel along the tunne 

axis immediately after leaving the target, we are interested 

only in the number of mesons per given momentum interval. The 

effective momentum spectrum, or number of particles in the m'th 

momentum interval per interacting proton, is given approximately 

by: 

sm = + 1 Smn emdin'% (12) 
n,i 

The quantity Xm is the meson interaction length in the target. 

In practice we have always taken Am to be equal to X . 
P 

As we shallseebelow, it is convenient to re-express the 

effective spectrum as an analytic expression for dN/dp, the 

number of particles produced per unit momentum interval. We 

use a polynomial of order two to represent the effective 

spectrum throughout the m'th momentum interval, so that: 

+B,p+Cmp2 . 

There will be a different set of coefficients for each momentum 

interval. We choose values for these coefficients such that 

the integral of the polynomial for three given intervals equals 

the number of particles Sm for those intervals. For the lowest 

momentum interval the three given intervals are the lowest three. 

For the highest momentum interval the three given are the highest 



-7- FN-247 
2042.000 

three. For all others the three given intervals are the interval 

in question and the two adjacent. Given these three conditions 

we may form a matrix and solve for the three coefficients. 

B. Energy Intervals and Geometry 

We now determine the flux for a given neutrino energy Ev. 

A table of neutrino flux versus neutrino energy may be obtained 

by repeating the procedure for different values of Ev. 

In perfect focusing the mesons all travel up the axis of 

the decay tunnel. Neutrinos of energy Ev, produced at a given 

point by mesons of momentum p, form a cone whose axis coincides 

with that of the decay tunnel and with a half angle e given 

by equation (7). Let the radius of the detector be b, the 

tunnel length be d, the shield length be s, and the recess 

distance (the distance from the shield to the detector) be 

r. Then if I$ > b/(s + r), at no point will the decay cone 

intersect the detector and the neutrino flux will be zero. 

If $ < b/(d + s + r) then the neutrino cone will intersect the 

detector from all points in the tunnel. If b/(s + r) > I$ > 

b/(d + s + r) then there will be a point in the decay tunnel 

before which no neutrinos will strike the detector and after 

which all will. 

We now examine, for fixed Ey, the behavior of $ as a 

function of p. A typical graph of $Z versus p is given in 

Figure 2. The minimum meson momentum necessary to produce a 

neutrino of energy Ey is E/r. Below that momentum the 

angle 4 is undefined. From zero at threshold the angle $ 
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rises to a maximum of mr/2Ev at a meson momentum of 2Ev/r 

or twice the threshold momentum. From there it asymtotically 

again approaches zero. 

Now if $max c b/(d f s + r) the decay cone will intersect 

the detector from all points in the tunnel for all meson 

momenta. Letting L equal d + s + r and al be equal to mL/b, 

then this condition is equivalent to the condition Ev 2 ral/2. 

At lower neutrino energies there will be a meson momentum 

interval where not all neutrinos strike the detector. The 

limits pl and p2 of this interval are given by: 

2 ra 
p1,2 = B$ (14) 

As the neutrino energy decreases the maximum decay angle 

becomes larger and when $max > b/(s + r) there appears a momentum 

interval where no neutrinos intersect the detector. This 

condition does not occur whenever we have Ev 2 ra2/2 where a2 

is given by m(s + r)/b. When EL1 is below this critical energy 

the limits of the momentum interval in which no neutrinos hit 

the detector are given by: 

(15) 

In summary, when Ev 2 ra1/2, there is a single meson 

momentum interval, in which all produced neutrinos strike the 

detector. For ral/2 > Ev 2 ra2/2, we have three meson momentum 

intervals. In the first and third, all neutrinos produced 

strike the detector, while in the second only some of the 

neutrinos do so. Finally for Ev < ra2/2, we have five meson 

momentum intervals. In the third the maximum of 4 occurs and 
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no neutrinos strike the detector. For the second and fourth 

momentum intervals only some of the neutrinos strike the 

detector. 

C. Integrals 

We now set up the required integrals for each of the cases 

described above. If we let S equal dN/dp, the number of mesons 

per unit momentum interval, then the number of neutrinos per 

unit energy interval produced is S/rp. This is true as long 

as the meson momentum is above threshold for production of 

neutrinos of the given energy. The decay length is propor- 

tional to the meson momentum, so the fraction of mesons 

undecayed after a length R is e -"'DE: is where C D is a constant 

of proportionality. 

Consider first a meson momentum interval in which all 

produced neutrinos of energy Ev strike the detector. The 

total fraction of mesons decaying in the tunnel is given as 1 - 

e-d/CDp , so that the number of neutrinos hitting the detector 

is given by the integral: 

NT = . (16) 

The integration is done over the momentum interval in question. 

For larger decay angles 4, only a fraction of the neutrinos 

strike the detector. There then exists a distance from the 

tunnel end Inin where the decay cone beings to intersect the 

detector. This distance is given by: 

a. b 
min 

=-- 
+ 

s-r (17) 

The number of neutrinos striking the detector from this 

momentum interval is now given by: 
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NT = Se-WCDP - 
DI 

The total neutrino flux at a given energy for each of the 

three cases discussed above may now be expressed in terms of 

the integrals given. The threshold meson momentum for production 

of neutrinos of energy Ev is Ev/r which represents the lower 

limit on the first integral. The upper limit on the last 

integral, p max may' in practical cases, be taken to be somewhat 

less than the incident proton momentum. 

For EV > ral/2, we have a single momentum interval and 

the flux per unit neutrino energy is given by: 

P r 
NT = J max s 11 - e -d/CDp 

1 
E,,/r c & dp (19) 

In the case where ra1/2 > Ev > ra2/2, there are three relevant 

momentum intervals and the total neutrino flux is given by: 

NT = I 
E/r 

‘1 s Ll _ e-WCDij & dp 

+ I p2 

Pl 

s~-~/~DP [ekminiCDP - 4 & dp 

f 

P 
f max S ‘1 - e-d&,j k dp . (20) 

p2 

Finally when Ev < ra2/2, there are five momentum intervals, but 

only four contributing any flux, giving: 

i p1 s 
? 

NT = b-e -d/cDpj & dp 
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+ I p3 Se-WCDp -eQmin/CD~ _ 1 
1 

p1 
\. i & dp 

+ I p2 Se-d/CDP LQmin/CDP _ 

p4 
I & dp 

J P 
+ max S _ e-d/GDP 

p2 
3 & dp (21) 

It remains simply to evaluate these integrals. For 

purposes of representing the production spectrum we have divided 

the momentum range into M intervals and approximated S in 

each interval by a polynomial Am + B,p + Cmp2. We must 

therefore evaluate the above integrals for each of the M 

momentum intervals separately using the expression for S 

appropriate to the given interval. We then sum over the results 

for all M intervals to obtain the total neutrino flux. The 

range of each integration is the intersection of that given 

above with the given momentum interval. 

The three integrals to be evaluated are given by: 

11 = J 'b 

pa 
S & dp (22) 

I2 = r 'b Se-d/CDp 1 

paU 
e dp 

13 = I 'b Se-(d - Qmin)/CDP 1 

pa 
G dp 

(23) 

(24) 
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We now replace S by its polynomial expression and drop subscripts. 

For the first integral we have: 

1 I1 = F 'b A 
I f 

pa - 
F + B + cp dp I (25) 

= $ log (P,/P,) + B(pb - Pa) + %C(P,2 - Pa2) 3 

To evaluate the second we let x = l/p and X = d/C,. Then we 

have: 

eeAx dx 

+ 
I. 
- B + *AC 

3 

-Ax .-Ax Xb 
%--kc - 
X x2 Ix 

a 

(26) 

where x = l/p, and xb = l/pb. 

known30'31 

The exponential integral is well 

and may be expanded in any of several possible series, 

depending on the value of the argument. 

The third integral may be rewritten as: 

I3 = ( pb 

p,' 
+ BP + CP? exp bpqEl ']exp F b] 

(27) 

and is obviously a bit unwieldy for direct evaluation. Denoting 

the integrand as F(p) we can approximate the integral as a sum: 
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N 

I3 21 
i=l 

F(pi) (AP)~ (28) 

where ((Ap)i\ is a partition of the interval 
i I 'ar 'b , and 

pi is a point within the i'th subinterval. The partition is 

chosen so that the intervals will be smallest where the variation 

of the integrand is largest. Since, in part of the integration 

range, the meson momentum may be near threshold for production 

of neutrinos of the given energy, the term which could have the 

most rapidly varying behavior is exp - 
I 
-b % 
.CDm 

(EL- 
rp-Ev) ' 3 

We there- 

fore divide the interval pa, pb in such a way that the change 

in this variable across each interval will be uniformly equal to 

0.1. The total number of intervals is then given by: 

10b 
N=q (29) 

We adjust this quantity so it is an exact integer, and to insure 

an adequate number of intervals, if it is less than ten, readjust 

it upwards to equal ten. Denoting the quantity in brackets in 

equation (29) as A, then we can define a quantity 6 by: 

6 = A/N (30) 

and a sequence gi as: 

We then have: 

pi=2 (l$ 

1 

(AP)~ = 3 
I 

1 
7gi - W)2 - 

(31) 

(32) 

giving the points and partition to be used to evaluate the sum 

in equation (28). 
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IV. Results 

The above numerical methods were incorporated into the NAL 

neutrino flux program NUADA in August, 1970. This program has 

then been used for all subsequent calculations of perfect 

focusing. 13-17 

In Figure 3 we present the results of a sample calculation 

for both pions and kaons. The decay tunnel length is taken to 

be 395.5 meters, the shield to be 910 meters, the recess to 

be 100 meters, and the detector diameter to be 1.35 meters. 31 

A target one centimeter long and four millimeters in diameter 

is used. The mean free path for both protons and mesons is 

taken to be .3 meters. An incident proton energy of 500 GeV 

is assumed and the spectrum is Hagedorn-Ranft. 

For comparison, we present in Figure 4 the same calculation 

done by ray-tracing methods. Consecutive points are joined 

by straight lines to illustrate the inaccuracy of the results. 
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Figure 3:' Neutrino flux versus neutrino energy. Method of 
calculation is that described in this paper. The 
ordinate is neutrinos/GeV - square meter - lo4 
incident protons. 
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Figure 4: Same as Figure 3 using ray-tracing methods. 


